SIRTURO® (bedaquiline) tablets, for oral use

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use SIRTURO® safely and effectively. See full prescribing information for SIRTURO.

SIRTURO® (bedaquiline) tablets, for oral use

Initial U.S. Approval 2012

WARNINGS: INCREASED MORTALITY; QT PROLONGATION

See full prescribing information for complete boxed warning.

Increased Mortality

• An increased risk of death was seen in the SIRTURO treatment group (9/79, 11.4%) compared to the placebo treatment group (2/81, 2.5%) in one placebo-controlled trial. Only use SIRTURO when an effective treatment regimen cannot otherwise be provided. (5.1)

QT Prolongation

• QT prolongation can occur with SIRTURO. Use with drugs that prolong the QT interval may cause additive QT prolongation. Monitor ECGs. Discontinue SIRTURO if significant ventricular arrhythmia or QTcF interval > 500 ms develops. (5.2)

Full prescribing information: Contents*

* Sections or subsections omitted from the full prescribing information are not listed

INDICATIONS AND USAGE

SIRTURO is a diarylquinoline antimycobacterial drug indicated as part of combination therapy in adults (18 years and older) with pulmonary multi-drug resistant tuberculosis (MDR-TB). Reserve SIRTURO for use when an effective treatment regimen cannot otherwise be provided. Administer SIRTURO by directly observed therapy (DOT). (1, 2.1)

This indication is approved under accelerated approval based on time to sputum culture conversion. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. (1, 14)

Limitations of Use: Do not use SIRTURO for the treatment of latent, extra-pulmonary tuberculosis or for the treatment of infections caused by non-tuberculous mycobacteria (1). Safety and efficacy of SIRTURO in HIV-infected patients with MDR-TB have not been established, as clinical data are limited (14).

ADVERSE REACTIONS

The most common adverse reactions reported in 10% or more of patients treated with SIRTURO were nausea, arthralgia, headache, hemoptysis and chest pain. (6.1)

DRUG INTERACTIONS

Avoid use of strong and moderate CYP3A4 inducers with SIRTURO. (7.1, 7.3)

OVERDOSAGE

Use caution in patients with severe hepatic impairment and only when the benefits outweigh the risks. Monitor for SIRTURO-related adverse reactions. (8.7)

See 17 for PATIENT COUNSELING INFORMATION and Medication Guide

Revised: 01/2017

FULL PRESCRIBING INFORMATION: CONTENTS*

1 INDICATIONS AND USAGE

2 DOSAGE AND ADMINISTRATION

2.1 Important Administration Instructions

2.2 Required Testing Prior to Administration

2.3 Recommended Dosage in Combination Therapy

3 DOSAGE FORMS AND STRENGTHS

4 CONTRAINDICATIONS

5 WARNINGS AND PRECAUTIONS

5.1 Increased Mortality

5.2 QT Prolongation

5.3 Hepatotoxicity

5.4 Drug Interactions

6 ADVERSE REACTIONS

6.1 Clinical Studies Experience

7 DRUG INTERACTIONS

7.1 CYP3A4 Inducers/Inhibitors

7.2 Other Antimicrobial Medications

7.3 Antiretroviral Medications

7.4 QT Interval Prolonging Drugs

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

8.3 Nursing Mothers

8.4 Pediatric Use

8.5 Geriatric Use

8.6 Hepatic Impairment

8.7 Renal Impairment

10 OVERDOSAGE

11 DESCRIPTION

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

12.2 Pharmacodynamics

12.3 Pharmacokinetics

12.4 Microbiology

13 NON-CLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, and Impairment of Fertility

13.2 Animal Toxicology and/or Pharmacology

14 CLINICAL STUDIES

15 REFERENCES

16 HOW SUPPLIED/STORAGE AND HANDLING

17 PATIENT COUNSELING INFORMATION
WARNINGS: INCREASED MORTALITY; QT PROLONGATION

Increased Mortality

- An increased risk of death was seen in the SIRTURO treatment group (97/9, 11.4%) compared to the placebo treatment group (2/81, 2.5%) in one placebo-controlled trial. Only use SIRTURO when an effective treatment regimen cannot otherwise be provided [see Indications and Usage (1) and Warnings and Precautions (5.1)].

QT Prolongation

- QT prolongation can occur with SIRTURO. Use with drugs that prolong the QT interval may cause additive QT prolongation. Monitor ECGs. Discontinue SIRTURO if significant ventricular arrhythmia or if QTcF interval prolongation of greater than 500 ms develops [see Warnings and Precautions (5.2)].

1 INDICATIONS AND USAGE

SIRTURO® is a diarylquinoline antimycobacterial drug indicated as part of combination therapy in the treatment of adults (18 years and older) with pulmonary multi-drug resistant tuberculosis (MDR-TB). Reserve SIRTURO for use when an effective treatment regimen cannot otherwise be provided. Administer SIRTURO by directly observed therapy (DOT).

This indication is approved under accelerated approval based on time to sputum culture conversion [see Clinical Studies (14)]. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Limitations of Use:

- Do not use SIRTURO for the treatment of:
 - Latent infection due to Mycobacterium tuberculosis
 - Drug-sensitive tuberculosis
 - Extra-pulmonary tuberculosis
 - Infections caused by non-tuberculous mycobacteria

- The safety and efficacy of SIRTURO in the treatment of HIV infected patients with MDR-TB have not been established as clinical data are limited [see Clinical Studies (14)].

2 DOSAGE AND ADMINISTRATION

2.1 Important Administration Instructions

- Administer SIRTURO by directly observed therapy (DOT).
- Use SIRTURO only in combination with other anti-mycobacterial drugs [see Dosage and Administration (2.3)].
- Emphasize the need for compliance with full course of therapy.

2.2 Required Testing Prior to Administration

Prior to treatment with SIRTURO, obtain the following:

- Susceptibility information for the background regimen against M. tuberculosis isolate if possible [see Dosage and Administration (2.3)]
- ECG [see Warnings and Precautions (5.2)]
- Serum potassium, calcium, and magnesium concentrations [see Warnings and Precautions (5.2)]
- Liver enzymes [see Warnings and Precautions (5.3)]

2.3 Recommended Dosage in Combination Therapy

Only use SIRTURO in combination with at least 3 other drugs to which the patient’s MDR-TB isolate has shown to be susceptible in vitro. If in vitro testing results are unavailable, SIRTURO treatment may be initiated in combination with at least 4 other drugs to which the patient’s MDR-TB isolate is likely to be susceptible. Refer to the prescribing information of the drugs used in combination with SIRTURO.

The recommended dosage of SIRTURO is 400 mg orally once daily for the first two weeks, followed by 200 mg orally three times per week (with at least 48 hours between doses) for 22 weeks (total duration of 24 weeks).

The SIRTURO tablet should be swallowed whole with water and taken with food.

If a dose is missed during the first 2 weeks of treatment, do not administer the missed dose (skip the dose and then continue the daily dosing regimen). From Week 3 onwards, if a 200 mg dose is missed, administer the missed dose as soon as possible, and then resume the 3 times a week dosing regimen.

3 DOSAGE FORMS AND STRENGTHS

SIRTURO® tablets, 100 mg are uncoated white to almost white round biconvex with debossing of “T” over “200” on one side and “100” on the other side.

4 CONTRAINDICATIONS

None.

5 WARNINGS AND PRECAUTIONS

5.1 Increased Mortality

An increased risk of death was seen in the SIRTURO treatment group (97/9, 11.4%) compared to the placebo treatment group (2/81, 2.5%) in one placebo-controlled trial (based on the 120-week visit window). One death occurred during the 24 weeks of administration of SIRTURO. The imbalance in deaths is unexplained.
SIRTURO® (bedaquiline) tablets, for oral use

Adverse drug reactions for SIRTURO were identified from the pooled safety data from 335 SIRTURO-exposed patients who received 8 weeks (Study 2) and 24 weeks (Studies 1 and 3) at the proposed dose. Studies 1 and 2 were randomized, double-blind, placebo-controlled trial in newly diagnosed patients with pulmonary MDR-TB. In both treatment arms, patients received SIRTURO or placebo in combination with other drugs used to treat MDR-TB. Study 3 was an open-label, noncomparative study with SIRTURO administered as part of an individualized pulmonary MDR-TB treatment regimen in previously treated patients.

In Study 1, 35% were Black, 17.5% were Hispanic, 12.5% were White, 9.4% were Asian, and 25.6% were of another race. Eight of 79 (10.1%) patients in the SIRTURO group and 16 of 81 (19.8%) patients in the placebo treatment group were HIV-infected. Seven (8.9%) SIRTURO-treated patients and six (7.4%) placebo-treated patients discontinued Study 1 because of an adverse reaction.

Table 1: Select Adverse Reactions from Study 1 That Occurred More Frequently Than Placebo During Treatment with SIRTURO

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>SIRTURO Treatment Group</th>
<th>Placebo Treatment Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>N=79 n (%)</td>
<td>N=81 n (%)</td>
</tr>
<tr>
<td>Headache</td>
<td>28 (35)</td>
<td>12 (15)</td>
</tr>
<tr>
<td>Transaminases Increased*</td>
<td>9 (11)</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Rash</td>
<td>6 (8)</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Blood Amylase Increased</td>
<td>2 (3)</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>
| *Terms represented by ‘transaminases increased’ included transaminases increased, AST increased, ALT increased, hepatic enzyme increased, and hepatic function abnormal.

No additional unique Adverse Reactions were identified from the uncontrolled Study 3.

In both Studies 1 and 2,aminotransferase elevations of at least 3 times the upper limit of normal developed more frequently in the SIRTURO treatment group (11/102 [10.8%] vs 6/105 [5.7%]) than in the placebo treatment group. In Study 2, 22/230 (9.6%) patients had alanine aminotransferase or aspartate aminotransferase greater than or equal to 3 times the upper limit of normal during the overall treatment period.

Increased Mortality

In Study 1, there was a statistically significant increased mortality risk by Week 120 in the SIRTURO treatment group compared to the placebo treatment group (9/79 [11.4%] versus 2/81 (2.5%), p-value=0.03, an exact 95% confidence interval of the difference [1.1%, 18.2%]). Five of the 9 SIRTURO deaths and the 2 placebo deaths were tuberculosis-related. One death occurred during the 24-week SIRTURO treatment period. The median time to death for the remaining eight subjects in the SIRTURO treatment group was 329 days after last intake of SIRTURO. The imbalance in deaths is unexplained; no discernible pattern between treatment groups was observed.

In the open-label Study 3, 6.9% (16/233) subjects died. The most common cause of death as reported by the investigator was TB (9 subjects). All but one subject who died of TB had not converted or had relapsed. The causes of death in the remaining subjects varied.

7 DRUG INTERACTIONS

7.1 CYP3A4 Inducers/Inhibitors

Bedaquiline exposure may be reduced during co-administration with inducers of CYP3A4 and increased during co-administration with inhibitors of CYP3A4.

CYP3A4 Inducers

Due to the possibility of a reduction of the therapeutic effect of bedaquiline because of the decrease in systemic exposure, co-administration of strong CYP3A4 inducers, such as rifampicins (i.e., rifampin, rifapentine and rifabutin), or moderate CYP3A4 inducers should be avoided during treatment with SIRTURO (see Clinical Pharmacology [12.3]).

CYP3A4 inhibitors

Due to the potential risk of adverse reactions to bedaquiline because of the increase in systemic exposure, prolonged co-administration of bedaquiline and strong CYP3A4 inhibitors, such as ketoconazole or itraconazole, for more than 14 consecutive days should be avoided unless the benefit outweighs the risk (see Clinical Pharmacology [12.3]). Appropriate clinical monitoring for SIRTURO-related adverse reactions is recommended.

7.2 Other Antimicrobial Medications

No dose-adjustment of isoniazid or pyrazinamide is required during co-administration with SIRTURO.

In a placebo-controlled clinical trial in patients with MDR-TB, no major impact of co-administration of SIRTURO on the pharmacokinetics of ethambutol, kanamycin, pyrazinamide, ofloxacin or cycloserine was observed.

7.3 Antiretroviral Medications

Lopinavir/ritonavir

Although clinical data in HIV/MDR-TB co-infected patients on the combined use of lopinavir (400 mg)/ritonavir (100 mg) with SIRTURO are not available, use SIRTURO with caution when co-administered with lopinavir/ritonavir and only if the benefit outweighs the risk (see Clinical Pharmacology [12.3]).

Nevirapine

No dosage adjustment of bedaquiline is required when co-administered with nevirapine (see Clinical Pharmacology [12.3]).

Elavirenz

Concomitant administration of bedaquiline and efavirenz, or other moderate CYP3A4 inducers, should be avoided (see Warnings and Precautions [5.4]).

7.4 QT Interval Prolonging Drugs

In a drug interaction study of bedaquiline and ketoconazole, a greater effect on QTc was observed after repeated dosing with bedaquiline and ketoconazole in combination than after repeated dosing with the individual drugs. Additive or synergistic QT prolongation was observed when bedaquiline was co-administered with other drugs that prolong the QT interval.

In Study 3, mean increases in QTc were larger in the 17 subjects who were taking clofazimine with bedaquiline at Week 24 (mean change from reference of 31.9 ms) than in subjects who were not taking clofazimine with bedaquiline at Week 24 (mean change from baseline of 12.3 ms). Monitor ECGs if SIRTURO is co-administered to patients receiving other drugs that prolong the QTc interval, and discontinue SIRTURO if evidence of serious ventricular arrhythmia or QTcF interval greater than 500 ms. (see Warnings and Precautions [5.2] and Clinical Pharmacology [12.2]).

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Category B

Reproduction studies performed in rats and rabbits have revealed no evidence of harm to the fetus due to bedaquiline. In these studies, the corresponding plasma exposure (AUC) was 2-fold higher in rats compared to humans. There are, however, no adequate and well-controlled studies of SIRTURO in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

8.3 Nursing Mothers

It is not known whether bedaquiline or its metabolites are excreted in human milk, but rat studies have shown that drug is concentrated in breast milk.

In rats, treated with bedaquiline at doses 1 time to 2 times the clinical dose (based on AUC comparisons), concentrations in milk were 6-fold to 12-fold higher than the maximum concentration observed in maternal plasma. Pups from these dams showed reduced body weights compared to control animals throughout the lactation period.

Because of the potential for adverse reactions in nursing infants, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

8.4 Pediatric Use

The safety and effectiveness of SIRTURO in pediatric patients have not been established.

8.5 Geriatric Use

Because of limited data, differences in outcomes or specific risks with SIRTURO cannot be ruled out for patients 65 years of age and older.

8.6 Hepatic Impairment

The pharmacokinetics of bedaquiline were assessed after single-dose administration to subjects with moderate hepatic impairment (Child-Pugh B) (see Clinical Pharmacology [12.3]). Based on these results, no dose adjustment is necessary for SIRTURO in patients with mild or moderate hepatic impairment. SIRTURO has not been studied in patients with severe hepatic impairment and should be used with caution in these patients only when the benefits outweigh the risks. Clinical monitoring for SIRTURO-related adverse reactions is recommended (see Warnings and Precautions [5.3]).

8.7 Renal Impairment

SIRTURO has mainly been studied in patients with normal renal function. Renal excretion of unchanged bedaquiline is not substantial (less than or equal to 0.001%). No dose adjustment is required in patients with mild or moderate renal impairment. In patients with severe renal impairment or end stage renal disease requiring hemodialysis or peritoneal dialysis, SIRTURO should be used with caution (see Clinical Pharmacology [12.3]). Monitor for adverse reactions of SIRTURO when administrated to patients with severe renal impairment or end stage renal disease requiring hemodialysis or peritoneal dialysis.
10 OVERDOSE
There is no experience with the treatment of acute overdose with SIRTURO. Take general measures to support basic vital functions including monitoring of vital signs and ECG (QT interval) in case of deliberate or accidental overdose. Removal of unabsorbed bedaquiline may be achieved by the administration of activated charcoal. Since bedaquiline is highly protein-bound, dialysis is not likely to significantly remove bedaquiline from plasma.

11 DESCRIPTION
SIRTURO (bedaquiline) for oral administration is available as 100 mg strength tablets. Each tablet contains 120.89 mg of bedaquiline fumarate drug substance, which is equivalent to 100 mg of bedaquiline. Bedaquiline is a diaryquinoline antimycobacterial drug.

Bedaquiline fumarate is a white to almost white powder and is practically insoluble in aqueous media. The chemical name of bedaquiline fumarate is (1R,2S)-1-(6-bromo-2-methoxy-3-quinolinyl)-4-(dimethylamino)-2-(1-naphthalenyl)-1-phenyl-2-butanol compound with fumaric acid (1:1). It has a molecular formula of C$_{32}$H$_{31}$BrN$_2$O$_2$•C$_4$H$_4$O$_4$ and a molecular weight of 671.58 (555.50 + 116.07). The molecular structure of bedaquiline fumarate is the following:

SIRTURO (bedaquiline) tablets, for oral use

12 CLINICAL PHARMACOLOGY
12.1 Mechanism of Action
Bedaquiline is a diaryquinoline antimycobacterial drug [see Microbiology (12.4)].

12.2 Pharmacodynamics
Bedaquiline is primarily subjected to oxidative metabolism leading to the formation of N-monodesmethyl metabolite (M2). M2 is not thought to contribute significantly to clinical efficacy given its lower average exposure (23% to 31%) in humans and lower antimycobacterial activity (4-fold to 6-fold lower) compared to the parent compound. However, M2 plasma concentrations appeared to correlate with QT prolongation.

Cardiac Electrophysiology
In Study 1, the mean increases in QTcF, corrected using the Fridericia method, were greater in the SIRTURO treatment group compared to the placebo treatment group from the first week of treatment (9.3 ms at Week 1 for SIRTURO and 3.5 ms for placebo). The largest mean increase in QTcF during the 24 weeks of SIRTURO treatment was 15.7 ms compared to 6.2 ms with placebo treatment (at Week 18). After bedaquiline treatment ended, the QTcF gradually decreased, and the mean value was similar to that in the placebo group by study week 60.

In Study 3, where patients with no treatment options received other QT-prolonging drugs used to treat tuberculosis, including clofazimine, concurrent use with SIRTURO resulted in additive QTcF prolongation, proportional to the number of QT prolonging drugs in the treatment regimen. Patients taking SIRTURO alone with no other QT prolonging drug developed a mean QTcF increase over baseline of 23.7 ms with no QTcF segment duration in excess of 480 ms, whereas patients taking at least 2 other QT prolonging drugs developed a mean QTcF prolongation of 30.7 ms on baseline, and resulted in QTcF segment duration in excess of 500 ms in one patient. [See Warnings and Precautions (5.3)].

12.3 Pharmacokinetics
Absorption
After oral administration of SIRTURO maximum plasma concentrations (C$_{max}$) are typically achieved at approximately 5 hours post-dose. C$_{max}$ and the area under the plasma concentration-time curve (AUC) increased proportionally up to the highest doses studied (700 mg single-dose (1.75 times the 400 mg loading dose)) [see Dosage and Administration (2.3)]. Administration of SIRTURO with a standard meal containing approximately 22 grams of fat (558 total Kcal) increased the relative bioavailability by about 2-fold compared to administration under fasted conditions. Therefore, SIRTURO should be taken with food to enhance its oral bioavailability.

Distribution
The plasma protein binding of bedaquiline is greater than 99.9%. The volume of distribution in the central compartment is estimated to be approximately 164 Liters.

Metabolism
CYP3A4 was the major CYP isozyme involved in vitro in the metabolism of bedaquiline and the formation of the N-monodesmethyl metabolite (M2), which is 4 to 6-times less active in terms of antimycobacterial potency.

Elimination
After reaching C$_{max}$, bedaquiline concentrations decline tri-exponentially. The mean terminal elimination half-life of bedaquiline and the N-monodesmethyl metabolite (M2) is approximately 5.5 months. This long terminal elimination phase likely reflects slow release of bedaquiline and M2 from peripheral tissues.

Excretion
Based on preclinical studies, bedaquiline is mainly eliminated in feces. The urinary excretion of unchanged bedaquiline was less than or equal to 0.001% of the dose in clinical studies, indicating that renal clearance of unchanged drug is insignificant.

Specific Populations
Hepatic Impairment: After single-dose administration of 400 mg SIRTURO to 8 patients with moderate hepatic impairment (Child-Pugh B), mean exposure to bedaquiline and M2 (AUC$_{0-Inf}$) was approximately 20% lower compared to healthy subjects. SIRTURO has not been studied in patients with severe hepatic impairment. [See Warnings and Precautions (5.3) and Use in Specific Populations (8.7)].

Renal Impairment: SIRTURO has mainly been studied in patients with normal renal function. Renal excretion of unchanged bedaquiline is not substantial (less than or equal to 0.001%). In a population pharmacokinetic analysis of MDR-TB patients treated with SIRTURO 200 mg three times per week, creatinine clearance was not found to influence the pharmacokinetic parameters of bedaquiline. It is therefore not expected that mild or moderate renal impairment will have a clinically relevant effect on the exposure to bedaquiline. However, in patients with severe renal impairment or end-stage renal disease requiring hemodialysis or peritoneal dialysis bedaquiline concentrations may be increased due to alteration of drug absorption, distribution, and metabolism secondary to renal dysfunction.

As bedaquiline is highly bound to plasma proteins, it is unlikely that it will be significantly removed from plasma by hemodialysis or peritoneal dialysis [see Use in Specific Populations (8.7)].

Sex: In a population pharmacokinetic analysis of MDR-TB patients treated with SIRTURO no clinically relevant difference in exposure between men and women were observed.

Race/Ethnicity: In a population pharmacokinetic analysis of MDR-TB patients treated with SIRTURO, systemic exposure (AUC) to bedaquiline was found to be 34% lower in Black patients than in patients from other race categories. This lower exposure was not considered to be clinically relevant as no clear relationship between exposure to bedaquiline and response has been observed in clinical trials of MDR-TB. Furthermore, response rates were comparable in patients of different race categories that completed 24 weeks of bedaquiline treatment.

HIV Co-infection: There are limited data on the use of SIRTURO in HIV co-infected patients [see Drug Interactions (7)].

Geriatric Population: There are limited data on the use of SIRTURO in tuberculosis patients 65 years and older.

In a population pharmacokinetic analysis of MDR-TB patients treated with SIRTURO, age was not found to influence the pharmacokinetics of bedaquiline.

Pediatric Population: The pharmacokinetics of SIRTURO in pediatric patients have not been evaluated.

Drug-Drug Interactions
In vitro, bedaquiline does not significantly inhibit the activity of the following CYP450 enzymes that were tested: CYP1A2, CYP2A6, CYP2C9/10, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A4S and CYP4A4, and it does not induce CYP1A2, CYP3A4, CYP2C9, CYP2C19, CYP2D6, CYP2E1, or CYP3A44 activities.

Bedaquiline is an intravenous substrate of CYP3A4, and because of this, the following clinical drug interaction studies were performed.

Ketoconazole: Co-administration of multiple-dose bedaquiline (400 mg once daily for 14 days) and multiple-dose ketoconazole (once daily 400 mg for 4 days) in healthy subjects increased the AUC$_{0-Inf}$, C$_{max}$ and C$_{min}$ of bedaquiline by 22% [80% CI (12, 32)], 3% [90% CI (-2, 21)] and 33% [90% CI (24, 43)] respectively [see Drug Interactions (7.1) and (7.4)].

Rifampin: In a drug interaction study of single-dose 300 mg bedaquiline and multiple-dose rifampin (once daily 600 mg for 21 days) in healthy subjects, the exposure (AUC) to bedaquiline was reduced by 52% [90% CI (-57, -46)] [see Drug Interactions (7.1)].

Antimicrobial agents: The combination of multiple-dose bedaquiline 400 mg once daily with multiple-dose isoniazid/pyrazinamide (300 mg/2000 mg once daily) in healthy subjects did not result in clinically relevant changes in the exposure (AUC) to bedaquiline, isoniazid or pyrazinamide [see Drug Interactions (7.2)].

In a placebo-controlled study in patients with MDR-TB, no major impact of co-administration of bedaquiline on the pharmacokinetics of ethambutol, kanamycin, pyrazinamide, ofloxacin or cycloserine was observed.

Lopinavir/ritonavir: In a drug interaction study in healthy volunteers of single-dose bedaquiline (400 mg) and multiple-dose lopinavir (400 mg/ritonavir (100 mg) given twice daily for 24 days, the mean AUC of bedaquiline was increased by 22% [90% CI (11, 34)] while the mean C$_{max}$ was not substantially affected [see Drug Interactions (7.3)].
SIRTURO® (bedaquiline) tablets, for oral use

Nevirapine: Co-administration of multiple-dose nevirapine 200 mg twice daily for 4 weeks in HIV-infected patients with a single 400 mg dose of bedaquiline did not result in clinically relevant changes in the exposure to bedaquiline [see Drug Interactions (7.3)].

Efavirenz: Co-administration of a single dose of bedaquiline 400 mg and efavirenz 600 mg daily for 27 days to healthy volunteers resulted in approximately a 20% decrease in the AUCint of bedaquiline; the Cmax of bedaquiline was not altered. The AUC and Cmax of the primary metabolite of bedaquiline (M2) were increased by 70% and 80%, respectively. The effect of efavirenz on the pharmacokinetics of bedaquiline and M2 following steady-state administration of bedaquiline has not been evaluated [see Drug Interactions (7.3)].

12.4 Microbiology

Mechanism of Action

SIRTURO is a diarylquinoline antimycobacterial drug that inhibits mycobacterial ATP (adenosine 5'-triphosphate) synthase, by binding to subunit c of the enzyme that is essential for the generation of energy in M. tuberculosis.

Drug Resistance

A potential for development of resistance to bedaquiline in M. tuberculosis exists. Modification of the atpE target gene, and/or upregulation of the MmpS5-MmpL5 efflux pump have been associated with increased bedaquiline MIC values in isolates of M. tuberculosis. Target-based mutations generated in preclinical studies lead to 8- to 133-fold increases in bedaquiline MIC, resulting in MICs ranging from 0.25 to 4.0 micrograms per mL. Efflux-based mutations have been seen in preclinical and clinical isolates. These lead to 2- to 8-fold increases in bedaquiline MICs, resulting in bedaquiline MICs ranging from 0.25 to 0.50 micrograms per mL.

Cross-Resistance

M. tuberculosis isolates from a clinical study in patients with MDR-TB that developed at least 4-fold increase in bedaquiline MIC were associated with mutations in Rv0678 gene that lead to upregulation of the MmpS5-MmpL5 efflux pump. Isolates with these efflux-based mutations are less susceptible to clofazimine.

Activity In Vitro and in Clinical Infections

SIRTURO has been shown to be active in vitro and in clinical infections against most isolates of M. tuberculosis [see Indications and Usage (1) and Clinical Studies (14)].

Susceptibility Test Methods

In vitro susceptibility tests should be performed according to published methods,\(^2,3\), and a MIC value should be reported. However, no correlation was seen between the culture conversion rates at Week 24 and baseline MICs in clinical studies (Table 2) and susceptibility test interpretive criteria for bedaquiline cannot be established at this time. A specialist in drug-resistant TB should be consulted in evaluating therapeutic options.

When susceptibility testing is performed by 7H9 broth microdilution or agar methods, a range of concentrations from 0.008 microgram per mL to 2.0 micrograms per mL should be assessed. The minimum inhibitory concentration (MIC) should be determined as the lowest concentration of bedaquiline that results in complete inhibition of growth by either agar or broth methods. All assays should be performed in polystyrene plates or tubes. Löwenstein-Jensen (LJ) medium should not be used for the susceptibility testing. Bedaquiline working solution should be prepared in dimethylsulfoxide (DMSO). An inoculum of approximately 10\(^5\) colony forming units/mL should be used for both liquid and solid media.

The bedaquiline agar (left) and resazurin microtiter assay (REMA; a 7H9 broth microdilution to which resazurin, a bacterial growth indicator, was added) right MIC distributions against clinical isolates resistant to isoniazid and rifampin from Studies 1, 2, and 3 are provided below.

13 NON-CLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, and Impairment of Fertility

Bedaquiline was not carcinogenic in rats up to the maximum tolerated dose of 10 mg/kg/day. Exposures at this dose in rats [AUCs] were within 1-fold to 2-fold of those observed in subjects in the Phase 2 clinical trials.

No mutagenic or clastogenic effects were detected in the in vitro non-mammalian reverse mutation (Ames) test, in vitro mammalian (mouse lymphoma) forward mutation assay and an in vivo mouse bone marrow micronucleus assay.

SIRTURO had no effects on fertility when evaluated in male and female rats. No relevant drug-related effects on developmental toxicity parameters were observed in rats and rabbits. The corresponding plasma exposure (AUC) was 2-fold higher in rats and lower for rabbits compared to humans. There was no effect of maternal treatment with bedaquiline at any dose level on sexual maturation, behavioral development, mating performance, fertility or reproductive capacity of the F1 generation animals. Body weight decreases in pups were noted in high dose groups during the lactation period after exposure to bedaquiline via milk and were not a consequence of in utero exposure. Concentrations of bedaquiline in milk were 6-fold to 12-fold higher that the maximum concentration observed in maternal plasma.

13.2 Animal Toxicology and/or Pharmacology

Bedaquiline is a cationic, amphiphilic drug that induced phospholipidosis (at almost all doses, even after very short exposures) in drug-treated animals, mainly in cells of the monocytic phagocytic system (MPS). All species tested showed drug-related increases in pigment-laden and/or foamy macrophages, mostly in the lymph nodes, spleen, lungs, liver, stomach, skeletal muscle, pancreas and/or uterus. After treatment ended, these findings were slowly reversible. Muscle degeneration was observed in several species at the highest doses tested. For example the diaphragm, esophagus, quadriceps and tongue of rats were

Table 2: Culture Conversion Rates (Week 24 Data Selection, No Outliers for Discontinuation) at Week 24 by Baseline Bedaquiline MIC for mITT Subjects from Study 1 and Study 3

<table>
<thead>
<tr>
<th>Baseline Bedaquiline MIC</th>
<th>SIRTURO (Bedaquiline) Treatment Group</th>
<th>24-Week Culture Conversion Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.008</td>
<td>7H11 Agar</td>
<td>7H19 Broth (REMA)</td>
</tr>
<tr>
<td>0.015</td>
<td>2/2 (100)</td>
<td>21/25 (84.0)</td>
</tr>
<tr>
<td>0.035</td>
<td>13/15 (86.7)</td>
<td>33/39 (84.6)</td>
</tr>
<tr>
<td>0.065</td>
<td>36/46 (78.3)</td>
<td>70/92 (76.1)</td>
</tr>
<tr>
<td>0.12</td>
<td>82/107 (76.6)</td>
<td>45/56 (80.4)</td>
</tr>
<tr>
<td>0.25</td>
<td>36/42 (85.7)</td>
<td>6/7 (85.7)</td>
</tr>
<tr>
<td>0.5</td>
<td>3/4 (75.0)</td>
<td>4/4 (75.0)</td>
</tr>
<tr>
<td>≥ 1</td>
<td>5/6 (83.3)</td>
<td>0/0 (0)</td>
</tr>
</tbody>
</table>

N=number of subjects with data; n=number of subjects with that result; MIC=minimum inhibitory concentration; BR=background regimen

Nineteen patients in the efficacy population of study 3 had bedaquiline susceptibility testing results of paired (baseline and post-baseline, all of which were at Week 24 or later) genotypically identical isolates. Twelve of the 19 had a post-baseline 4-fold increase in bedaquiline MIC. Whole genome sequencing of 9 of these 12 post-baseline isolates was done and no mutations were found in the ATP synthase operon. All 9 were found to have a mutation in Rv0678. Eleven of the twelve (11/12) increases in bedaquiline MIC were seen in patients with pre-XDR-TB or with XDR-TB. Pre-XDR-TB is defined as MDR-TB isolates resistant to either a fluoroquinolone or a second line injectable drug, and XDR-TB as MDR-TB isolates resistant to both a fluoroquinolone and a second line injectable drug. Based on available data, response rate (culture conversion at week 120 endpoint) was similar in subjects with 4-fold increases in bedaquiline MIC (5/12) and subjects with < 4-fold increases (3/7).

Quality Control

Susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of testing. Assays using standard bedaquiline powder should provide the following range of MIC values shown in Table 3.

Table 3: Quality Control Ranges using Agar and Broth Dilution Methods and M. tuberculosis H37Rv

<table>
<thead>
<tr>
<th>Organism</th>
<th>Bedaquiline MIC (micrograms/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bedaquiline H37Rv</td>
</tr>
<tr>
<td></td>
<td>0.015 – 0.06</td>
</tr>
<tr>
<td></td>
<td>0.015 – 0.12</td>
</tr>
<tr>
<td></td>
<td>0.015 – 0.12</td>
</tr>
</tbody>
</table>

NIRTO® (bedaquiline) tablets, for oral use

MICs for baseline M. tuberculosis isolates from subjects in Studies 1 and 3 and their sputum culture conversion rates at Week 24 are shown in Table 2 below. Based on the available data, there was no trend for poor microbiological outcomes related to baseline bedaquiline MIC.

Figure 1: Bedaquiline MIC Distribution Against Baseline MDR\(\text{H}\text{AR,T-B\) Isolates from Studies 1, 2, and 3 mITT Subjects: Agar Method (left) and Broth (REMA) Method (right)
affected after 26 weeks of treatment at doses similar to clinical exposures based on AUC comparisons. These findings were not seen after a 12-week, treatment-free, recovery period and were not present in rats given the same dose biweekly. Degeneration of the fundic mucosa of the stomach, hepatocellular hypertrophy, and pancreatitis were also seen.

14 CLINICAL STUDIES

A placebo-controlled, double-blind, randomized trial (Study 1) was conducted in patients with newly diagnosed sputum smear-positive MDR pulmonary *M. tuberculosis*. All patients received a combination of five other antimycobacterial drugs used to treat MDR-TB (i.e., ethionamide, kanamycin, pyrazinamide, ofloxacin, and cycloserin/terizidone or available alternative) for a total duration of 18-24 months or at least 12 months after the first confirmed negative culture. In addition to this regimen, patients were randomized to receive 24 weeks of treatment with SIRTURO 400 mg once daily for the first 2 weeks followed by 200 mg 3 times per week for 22 weeks or matching placebo for the same duration. Overall, 79 patients were randomized to the SIRTURO arm and 81 to the placebo arm. A final evaluation was conducted at Week 120.

Sixty-seven patients randomized to SIRTURO and 66 patients randomized to placebo had confirmed MDR-TB, based on susceptibility tests (taken prior to randomization) or medical history if no susceptibility results were available, and were included in the efficacy analyses. Demographics were as follows: 63% of the study population was male, with a median age of 34 years, 35% were Black, and 15% were HIV-positive (median CD4 cell count 488 cells/µL). Most patients had cavitation in one lung (62%); and 18% of patients had cavitation in both lungs.

Time to sputum culture conversion was defined as the interval in days between the first dose of study drug and the date of the first of two consecutive negative sputum cultures collected at least 25 days apart during treatment. In this trial, the SIRTURO treatment group had a decreased time to culture conversion and improved culture conversion rates compared to the placebo treatment group at Week 24. Median time to culture conversion was 83 days for the SIRTURO treatment group compared to 125 days for the placebo treatment group. Table 4 shows the proportion of patients with sputum culture conversion at Week 24 and Week 120.

Table 4: Culture Conversion Status in Patients with MDR-TB at Week 24 and Week 120 in Study 1

<table>
<thead>
<tr>
<th>Microbiologic Status</th>
<th>SIRTURO (24 weeks) + combination of other antimycobacterial drugs N=67</th>
<th>Placebo (24 weeks) + combination of other antimycobacterial drugs N=66</th>
<th>Difference [95% CI] p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sputum Culture Conversion</td>
<td>78%</td>
<td>58%</td>
<td>20.0% [4.5%, 35.6%] 0.014</td>
</tr>
<tr>
<td>Treatment failure*</td>
<td>22%</td>
<td>42%</td>
<td></td>
</tr>
<tr>
<td>Died</td>
<td>1%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Lack of conversion</td>
<td>21%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>Discontinuation</td>
<td>0%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Week 120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sputum Culture Conversion</td>
<td>61%</td>
<td>44%</td>
<td>17.3% [0.5%, 34.0%] 0.046</td>
</tr>
<tr>
<td>Treatment failure*</td>
<td>39%</td>
<td>56%</td>
<td></td>
</tr>
<tr>
<td>Died</td>
<td>12%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Lack of conversion/ relapse</td>
<td>16%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>Discontinuation</td>
<td>10%</td>
<td>18%</td>
<td></td>
</tr>
</tbody>
</table>

* A patient's reason for treatment failure was counted only in the first row for which a patient qualifies.

** Patients received 24 weeks of SIRTURO or placebo for the first 24 weeks and received a combination of other antimycobacterial drugs for up to 96 weeks.

Study 2 was a smaller placebo controlled study designed similarly to Study 1 except that SIRTURO or placebo was given for only 8 weeks instead of 24 weeks. Patients were randomized to either SIRTURO and other drugs used to treat MDR-TB (SIRTURO treatment group) (n=23) or placebo and other drugs used to treat MDR-TB (placebo treatment group) (n=24). Twenty-one patients randomized to the SIRTURO treatment group and 23 patients randomized to the placebo treatment group had confirmed MDR-TB based on subjects’ baseline *M. tuberculosis* isolate obtained prior to randomization. The SIRTURO treatment group had a decreased time to culture conversion and improved culture conversion rates compared to the placebo treatment group at Week 8. At Weeks 8 and 24, the differences in culture conversion proportions were 38.8% (95% CI: [12.3%, 63.1%]) and p-value: 0.004, 15.7% (95% CI: [−11.9%, 41.9%]) and p-value: 0.323, respectively.

Study 3 was a Phase 2b, uncontrolled study to evaluate the safety, tolerability, and efficacy of SIRTURO as part of an individualized MDR-TB treatment regimen in 233 patients with sputum smear positive (within 6 months prior to screening) pulmonary MDR-TB. Patients received SIRTURO for 24 weeks in combination with antibacterial drugs. Upon completion of the 24 week treatment with SIRTURO, all patients continued to receive their background regimen in accordance with national TB program (NTP) treatment guidelines. A final evaluation was conducted at Week 120. Treatment responses to SIRTURO at week 120 were generally consistent with those from Study 1.

15 REFERENCES

16 HOW SUPPLIED/STORAGE AND HANDLING

** How supplied**

SIRTURO is supplied as uncoated white to almost white round biconvex 100 mg tablets with debossing of “T” over “207” on one side and “100” on the other side. The tablets are packaged in white high density polyethylene (HDPE) bottles with child-resistant polypropylene (PP) closure with induction seal liner. Each bottle contains 188 tablets.

NDC 59676-701-01

** Storage and handling**

Keep out of reach of children.

Dispense in original container. Store tablets dispensed outside the original container in a tight light-resistant container with an expiration date not to exceed 3 months.

Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F). [See USP Controlled Room Temperature]

17 PATIENT COUNSELING INFORMATION

** Advise patients that the following serious side effects can occur with SIRTURO: death, heart rhythm abnormalities, and/or hepatitis. In addition, advise patients about other potential side effects: nausea, joint pain, headache, increased blood amylase, hemoptysis, chest pain, anorexia, and/or rash. Additional testing may be needed to monitor or reduce the likelihood of adverse effects.**

** Compliance with Treatment**

Advise patients to take SIRTURO in combination with other antimycobacterial drugs as prescribed. Emphasize compliance with the full course of therapy. Advise patients that skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the treatment and (2) increase the likelihood that their mycobacterium may develop resistance and the disease will not be treatable by SIRTURO or other antibacterial drugs in the future.

If a dose is missed during the first 2 weeks of treatment, advise patients not to make up the missed dose but to continue the usual dosing schedule. From Week 3 onwards, if a 200 mg dose is missed, advise patients to take the missed dose as soon as possible, and then resume the 3 times a week regimen.

** Administration Instructions**

Inform patients to take SIRTURO with food.

Use with Alcohol and other Medications

Advise patients to abstain from alcohol, hepatotoxic medications or herbal products.

Advise patients to discuss with their physician the other medications they are taking and other medical conditions before starting treatment with SIRTURO.

Product of India

Finished Product Manufactured by: Recipharm Pharmaservices Pvt. Ltd., Bangalore, India

Manufactured for:

Janssen Therapeutics, Division of Janssen Products, LP

Titusville, NJ 08560

© Janssen Products, LP 2012
MEDICATION GUIDE

SIRTURO® (ser toor' oh)

(bedaquiline)

Tablets, for oral use

Read this Medication Guide before you start taking SIRTURO® and each time you get a refill. There may be new information. This information does not take the place of talking with your healthcare provider about your medical condition or your treatment.

What is the most important information I should know about SIRTURO®?

SIRTURO® is an antibiotic prescription medicine used to treat multi-drug resistant tuberculosis (TB) of the lungs in people with limited treatment options. Multi-drug resistant tuberculosis is a serious disease that can result in death and for which there are few treatment choices. More people treated with SIRTURO® cleared TB from their sputum compared to people who did not receive SIRTURO®.

It is important to complete the full course of treatment with SIRTURO® and your other TB medicines and not skip doses. Skipping doses may decrease the effectiveness of the treatment and increase the likelihood that your TB disease will not be treatable by SIRTURO® or other medicines.

SIRTURO® can cause serious side effects, including:

- In one clinical trial, more deaths were seen in people who were treated with SIRTURO® compared to people who did not receive SIRTURO®.
- Heart rhythm problems can happen with SIRTURO®.

Talk with your healthcare provider about whether SIRTURO® is right for you.

What is SIRTURO®?

SIRTURO® is an antibiotic prescription medicine used to treat resistant tuberculosis (TB) of the lungs.

It is not known if SIRTURO® is safe and effective in:

- people who do not have active TB
- people who have TB that is not resistant to antibiotics
- people who have types of TB other than TB of the lungs
- people who have an infection caused by a bacteria other than TB
- children under 18 years of age

Before you take SIRTURO®, tell your healthcare provider if you:

- have had an abnormal heart rhythm (ECG) or other heart problems.
- anyone in your family has or has had a heart problem called “congenital long QT syndrome”.
- have decreased thyroid gland function (this can be seen in a blood test).
- have liver or kidney problems or any other medical conditions, including HIV infection.
- are pregnant or plan to become pregnant. It is not known if SIRTURO® will harm your unborn baby.
- are breastfeeding or plan to breastfeed. It is not known if SIRTURO® passes into breast milk. You and your healthcare provider should decide if you will take SIRTURO® or breastfeed.

Tell your healthcare provider about all the medicines you take, including prescription and over-the-counter medicines, vitamins, and herbal supplements.
How should I take SIRTURO®?
- SIRTURO® must always be taken with other medicines to treat TB. Your healthcare provider will decide which other medicines you should take with SIRTURO®.
- Take SIRTURO® with food. Swallow the tablets whole with water.
- Take SIRTURO® exactly as your healthcare provider tells you to take it. Take SIRTURO® for a total of 24 weeks. You may need to take your other TB medicines for longer than 24 weeks. Check with your healthcare provider.

Week 1 and Week 2:
Take 400 mg (4 tablets) 1 time each day.

Week 3 to Week 24:
- Take 200 mg (2 tablets) a day 3 times a week.
- Take SIRTURO® doses at least 48 hours apart. For example, you may take SIRTURO® on Monday, Wednesday and Friday every week.
- Do not skip SIRTURO® doses. If you skip doses, or do not complete the total 24 weeks of SIRTURO® your treatment may not work as well and your TB may be harder to treat.
- If you take more SIRTURO® than you should, talk to a healthcare provider right away.

If you miss your SIRTURO® dose during Week 1 or Week 2:
- Do not take a double dose to make up for the missed dose. Take the next dose as usual.

If you miss your SIRTURO® dose during Week 3 to Week 24:
- Take the missed dose as soon as possible and resume the 3 times a week schedule.
- If you miss a dose and you are not sure what to do, talk to your healthcare provider.
- Do not stop taking SIRTURO® without first talking to your healthcare provider.

What should I avoid while taking SIRTURO®?
- You should not drink alcohol while taking SIRTURO®.

What are the possible side effects of SIRTURO®?
SIRTURO® may cause serious side effects, including:
- See “What is the most important information I should know about SIRTURO®?”
- serious heart rhythm changes (QT prolongation). Tell your healthcare provider right away if you have a change in your heartbeat (a fast or irregular heartbeat), or if you faint.
- liver problems (hepatotoxicity). Call your healthcare provider right away if you have unexplained symptoms such as nausea or vomiting, stomach pain, fever, weakness, itching, unusual tiredness, loss of appetite, light colored bowel movements, dark colored urine, yellowing of your skin or the white of your eyes.

The most common side effects of SIRTURO® include nausea, joint pain, headache, an abnormal lab test associated with damage to the pancreas, coughing up blood, chest pain, loss of appetite, or rash.

These are not all the possible side effects of SIRTURO®. For more information, ask your healthcare provider or pharmacist.
Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

How should I store SIRTURO®?
- Store SIRTURO® at 59°F to 86°F (15°C to 30°C).
- Keep SIRTURO® in the original container, and keep SIRTURO® out of light.

Keep SIRTURO® and all medicines out of reach of children.
General information about the safe and effective use of SIRTURO®:
This Medication Guide summarizes the most important information about SIRTURO®. If you would like more information, talk to your healthcare provider. You can ask your pharmacist or healthcare provider for information about SIRTURO® that is written for health professionals.

What are the ingredients in SIRTURO®?
Active ingredient: bedaquiline
Inactive ingredients: colloidal anhydrous silica, corn starch, croscarmellose sodium, hypromellose 2910, lactose monohydrate, magnesium stearate, microcrystalline cellulose, polysorbate 20, purified water (removed during processing)

Product of India
Finished Product Manufactured by: Recipharm Pharmaservices Pvt. Ltd., Bangalore, India
Manufactured for: Janssen Therapeutics, Division of Janssen Products, LP Titusville, NJ 08560
© Janssen Products, LP 2012
This Medication Guide has been approved by the U.S. Food and Drug Administration
Revised: 01/2017